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Abstract: In this paper, we revisit a two-user space-time line coded uplink non-orthogonal multiple ac-
cess (STLC-NOMA) system for Internet-of-things (IoT) networks and propose a novel low-complexity
STLC-NOMA system. The basic idea is that both IoT devices (stations: STAs) employ amplitude-shift
keying (ASK) modulators and align their modulated symbols to in-phase and quadrature axes,
respectively, before the STLC encoding. The phase distortion caused by wireless channels becomes
compensated at the receiver side with the STLC, and thus each STA’s signals are still aligned on
their axes at the access point (AP) in the proposed uplink STLC-NOMA system. Then, the AP can
decode the signals transmitted from STAs via a single-user maximum-likelihood (ML) detector with
low-complexity, while the conventional uplink STLC-NOMA system exploits a multi-user joint ML de-
tector with relatively high-complexity. We mathematically analyze the exact BER performance of the
proposed uplink STLC-NOMA system. Furthermore, we propose a novel expectation-maximization
(EM)-based blind energy estimation (BEE) algorithm to jointly estimate both transmit power and
effective channel gain of each STA without the help of pilot signals at the AP. Somewhat interestingly,
the proposed BEE algorithm works well even in short-packet transmission scenarios. It is worth not-
ing that the proposed uplink STLC-NOMA architecture outperforms the conventional STLC-NOMA
technique in terms of bit-error-rate (BER), especially with high-order modulation schemes, even
though it requires lower computation complexity than the conventional technique at the receiver.

Keywords: amplitude-shift keying (ASK); blind decoder; clustering; expectation-maximization (EM);
Gaussian mixture model (GMM); Internet-of-things (IoT); low-complexity transceiver; space-time
line code (STLC); uplink non-orthogonal multiple access (NOMA)

1. Introduction

The fifth-generation (5G) and beyond mobile communication systems with Internet-of-
things (IoT) are vital infrastructures to realize seamless and hyper-connectivity networks.
Future IoT applications will consist of a massive number of wireless devices; hence the next-
generation networks, especially 6G, require much higher spectral- and energy-efficiency,
connection density, and lower latency performance than 5G networks [1–3]. During a
decade, non-orthogonal multiple access (NOMA) technologies have been vigorously stud-
ied to fulfill the requirements above and overcome the spectrum scarcity problem [4–7].
The basic concept of NOMA is to allow multiple users to share the same radio resources
through power- or code-domain multiplexing. It has been found that NOMA can sig-
nificantly improve spectral efficiency and network capacity in wireless communication
systems [8,9]. More recently, various NOMA techniques have been investigated, applying
grant-free multiple access [3,10], backscatter communication [11], reconfigurable intelligent
surface (RIS) [12,13], relay-assisted network [14], unmanned aerial vehicle (UAV)-enabled
network [15], visible light communication (VLC) [16], etc.

Space-time line code (STLC) is a symmetric communication technique of the well-
known space-time block code (STBC) [17]. The STLC can achieve full-rate and full-diversity
gain performance in multiple-input multiple-output (MIMO) systems, even though full
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channel state information (CSI) is available only at the transmitter (CSIT). As summarized in
Refs. [18–20], its applications to various MIMO communication systems have been actively
investigated. In particular, we have proposed an STLC-applied NOMA (STLC-NOMA)
system for uplink IoT networks while raising some issues about the conventional uplink
NOMA systems [21–23]. Most existing literature on the uplink NOMA assumes that CSI
for all users is available at the base station (BS). However, it is practically infeasible for
an access point (AP) to acquire the full CSI of a massive number of IoT devices (stations:
STAs) due to the high signaling overhead for exchanging pilot signals [23]. We exploited
the channel reciprocity property in the time-division duplex (TDD) system and applied
STLC to NOMA-based uplink IoT networks. In conclusion, we have observed that each
STA in the two-user uplink STLC-NOMA network can achieve the same bit-error-rate
(BER) performance as the STLC using orthogonal resources as the signal-to-noise ratio
(SNR) increases. Moreover, we have concluded that the uplink STLC-NOMA system is
remarkably adequate for IoT networks in which two STAs share common radio resource
blocks, considering the complexity and spatial diversity gain.

In this paper, we revisit the conventional two-user uplink STLC-NOMA system [23]
and propose a novel low-complexity uplink STLC-NOMA system to strike the follow-
ing shortcomings.

• Although the joint maximum-likelihood (ML) detector achieves optimal BER perfor-
mance for uplink NOMA systems, it results in significant computational complexity;

• The complex constellation diagram at the AP makes it intractable for the AP to estimate
the effective channel gain of each STA blindly.

To this end, instead of phase-shift keying (PSK) or quadrature amplitude modulation
(QAM) with constellation rotation as in the conventional uplink STLC-NOMA system, we
employ M-ary amplitude-shift keying (ASK) modulations for both STAs and align each
STA’s modulated symbols on each axis in the in-phase and quadrature (I-Q) plane. Thanks
to the fundamental nature of STLC, the phase distortion of the transmitted signals caused by
wireless channels is compensated at the receiver. In other words, on the AP side, the signals
of each STA are still aligned on their axis with only the channel gain applied; hence the
AP can detect the transmitted signals of each STA through an ML detector without joint
ML detection.

On the other hand, the AP requires each STA’s transmit power and effective channel
gain called partial CSI to detect transmitted signals. This is indispensable in the uplink
STLC-NOMA system for blindly decoding the signals transmitted from STAs, but it has
not been well-elaborated in literature [22,23]. Therefore, we further design a blind energy
estimation (BEE) scheme for the proposed low-complexity STLC-NOMA system based on
expectation-maximization (EM) for Gaussian mixture model (GMM) [24,25]. Although a
machine learning-based blind decoding method for STLC systems has been proposed
in Ref. [26], our algorithm can be implemented without a learning engine; hence it has low-
complexity and high cost-efficiency. More specifically, the AP exploits the EM algorithm
that infers the parameters of a GMM as the blind transmit power and effective channel
gain estimation method for both STAs. As a result, our main contributions in this paper
can be summarized as follows.

• We proposed a novel low-complexity STLC-NOMA system for two-user uplink IoT net-
works. We employ amplitude-shift keying (ASK) modulators for both STAs, and align
them respectively to each axis in the I-Q plane;

• We theoretically analyze the exact BER performance of the novel uplink STLC-NOMA
system. The Monte-Carlo simulations validate that the mathematical BER expressions
of the proposed system are precisely the same as the numerical results;

• We design an EM-based BEE method estimating the transmission power and effective
channel gain of each STA at the AP. Then, the AP can detect the signals transmitted
from the two STAs via an ML detector.
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The remainder of this paper is organized as follows. In Section 2, we describe the sys-
tem model of the proposed novel low-complexity uplink STLC-NOMA system. In Section 3,
we mathematically analyze the exact BER performance and spatial diversity order for each
STA. In Section 4, we design a blind energy estimation (BEE) scheme based on the EM
for GMM. In Section 5, numerical results are presented. The conclusions are drawn in
Section 6.

2. System Model

We consider an uplink STLC-NOMA network consisting of two single-antenna IoT
devices (stations: STAs) and a dual-antenna access point (AP), where each STA has its local
CSI and the AP does not have any CSI (CSIT) as in Ref. [23]. Although we consider a simple
system model for the convenience of explanation, the framework proposed in this paper
can be easily extended to the MIMO system model by employing the STLC encoder for
multiple transmit antennas and low-rate STLC combiner for multiple receive antennas [17].
Unlike Ref. [23], both STAs employ M-ary amplitude-shift keying (ASK) modulators on
the in-phase and quadrature axes, respectively. Without loss of generality, we assume that
the first STA occupies the in-phase axis; thus, the second STA uses the quadrature axis. One
frame of the STA consists of L symbols, where L is defined as the frame length, and block
fading channels are assumed while at least one frame is transmitted, i.e., the wireless
channels remain constant during a frame time. It is also assumed that two STAs in the
network are synchronized by observing the common pilot signals periodically broadcast
from the AP.

Both STAs simultaneously transmit their frame to the AP exploiting STLC over the
same radio resource blocks. The STLC encoded signal for the l (∈ {1, 2, . . . , L})th symbol
of the n (∈ {1, 2})th STA, denoted by s(l)n , can be expressed equivalently as follows:

s(2l′−1)
n =

√
Pn

h∗n,1

(
jn−1x(2l′−1)

n

)
+ h∗n,2

(
jn−1x(2l′)

n

)∗
√
|hn,1|2 + |hn,2|2

,

s(2l′)
n =

√
Pn

h∗n,2

(
jn−1x(2l′−1)

n

)∗
− h∗n,1

(
jn−1x(2l′)

n

)
√
|hn,1|2 + |hn,2|2

,

(1)

where j (,
√
−1) represents the imaginary unit and l′ (∈ {1, 2, . . . , L/2}) is defined to

indicate the odd (2l′ − 1) and even (2l′) M-ASK symbols in the frame; x(l)n denotes the
lth normalized M-ASK symbol of the nth STA, such that E[x(l)n ] = 1, and hn,m denotes
the wireless channel between the nth STA and the m (∈ {1, 2})th antenna of the AP. All
channels are assumed to follow an independent and identically distributed (i.i.d.) complex
Gaussian distribution with zero mean and unit variance, i.e., hn,m ∼ CN (0, 1), ∀n, m.
As aforementioned, static channels are assumed for one frame, so hn,m remains constant for
each frame of length L symbols. Furthermore, Pn is the transmission power of the nth STA,

such that E[‖[s(2l′−1)
n , s(2l′)

n ]T‖2/2] = Pn. Equation (1) shows that two consecutive M-ASK
symbols are encoded into two STLC signals within the frame.

The received frame at the mth antenna of the AP, denoted by ym (= [y(1)m , . . . , y(L)
m ]T ∈

CL×1), is then written as follows:

ym =
2

∑
n=1

√
βn · hn,m · sn + wm, (2)

where βn is the large-scale fading component, sn (= [s(1)n , . . . , s(L)
n ]T ∈ CL×1) represents

the transmit frame of the nth STA, and wm (= [w(1)
m , · · · , w(L)

m ] ∈ CL×1) denotes the
additive white Gaussian noise (AWGN) at the mth antenna of the AP that follows an i.i.d.



Sensors 2022, 22, 8054 4 of 14

CN (0, N0 · IL), where N0 and IL represent the noise power and the L× L identity matrix,
respectively.

The AP combines the received signals in (2) according to the linear combining proce-
dure of the STLC as follows:

ỹ2l′−1 = y(2l′−1)
1 +

(
y(2l′)

2

)∗
=

2

∑
n=1

√
Pn
√

βn‖hn‖jn−1x(2l′−1)
n + w(2l′−1)

1 +
(

w(2l′)
2

)∗
,

ỹ2l′ =
(

y(2l′−1)
2

)∗
− y(2l′)

1 =
2

∑
n=1

√
Pn
√

βn‖hn‖jn−1x(2l′)
n +

(
w(2l′−1)

2

)∗
− w(2l′)

1 ,

(3)

where ỹl denotes the lth STLC decoding signal and hn , [hn,1, hn,2]
T. We can observe that

the phase distortion of the transmitted signals caused by the wireless channels is completely
compensated thanks to the fundamental nature of STLC, hence each STA’s symbols x(l)n are
still aligned for each axis in the I-Q plane. From (3), the STLC decoding frame at the AP,
denoted by ỹ (= [ỹ1, . . . , ỹl , . . . , ỹL]

T ∈ CL×1), can be stated as

ỹ =
√

P1
√

β1‖h1‖x1 + j
√

P2
√

β2‖h2‖x2 + w̃, (4)

where xn (= [x(1)n , . . . , x(L)
n ]T ∈ CL×1) denotes the length-L frame transmitted from the nth

STA, each consisting of L M-ASK symbols; and w̃ represents the equivalent AWGN vector
at the AP following an i.i.d. CN (0, 2N0 · IL). Note that the noise variance is doubled due to
the nature of STLC.

Let γn be the effective channel gain of the nth STA defined as γn , ‖gn‖2, where
gn (,

√
βn[hn,1, hn,2]

T ∈ C2×1) is the wireless channel vector including the large-scale
fading component between the nth STA and the AP, i.e., gn ∼ CN (0, βn · I2). We will
design a blind energy estimation (BEE) algorithm for the proposed uplink STLC-NOMA
system in Section 4. This allows the AP to blindly estimate the transmit power and effective
channel gain of each STA. The AP then detects the transmitted M-ASK symbols for all n
and l through a simple maximum-likelihood (ML) detector from (4) as follows:

x̂(l)1 = arg min
x∈X

∣∣∣<[ỹl ]−
√

P1γ1x
∣∣∣2, for the first STA,

x̂(l)2 = arg min
x∈X

∣∣∣=[ỹl ]−
√

P2γ2x
∣∣∣2, for the second STA,

(5)

where <[·] and =[·] denote the real and imaginary components of a complex number,
respectively; x̂(l)n is the estimate of the lth symbol of the nth STA, and X is a set of the
normalized M-ASK symbols defined as

X =

x

∣∣∣∣∣x =
2m− 1−M√

∑M
m=1(2m− 1−M)2/M

, m = 1, 2, . . . , M

.

It is worth noting that the proposed novel low-complexity STLC-NOMA system has
O(L · M) computational complexity for the detector, whereas the conventional STLC-
NOMA employing a joint ML detector has O(L ·M2) complexity in the two-user uplink
IoT network [23].

3. Performance Analysis

We mathematically analyze the performance of the proposed novel low-complexity
uplink STLC-NOMA system employing M-ASK modulation. In particular, we derive the
bit-error-rate (BER) performance and spatial diversity order of each STA. Since the signals
of both STAs are aligned orthogonally to each other on the I-Q plane, the BER performance
of each STA can be derived straightforwardly from the BER expression for the M-ary pulse
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amplitude modulation (PAM). Specifically, the BER of the nth STA, denoted by Pb,n, can be
derived from Ref. [27] as follows:

Pb,n = Eγn

[
1

M log2 M

log2 M

∑
k=1

[
(1−2−k)M−1

∑
i=0

{
Φ(i, k, m)·erfc

(
(2i + 1)

√
3·ρn ·γn

2(M2 − 1)

)}]]

=
1

M log2 M

log2 M

∑
k=1

[
(1−2−k)M−1

∑
i=0

{
Φ(i, k, m)·Eγn

[
erfc

(
(2i + 1)

√
3·ρn ·γn

2(M2 − 1)

)]}]
,

(6)

where ρn (= Pn/N0) denotes the transmit SNR of the nth STA and

Φ(i, k, M) = (−1)
⌊

i·2k−1
M

⌋(
2k−1 −

⌊
i · 2k−1

M
+

1
2

⌋)
,

where b·c denotes the floor function that gives the greatest integer number less than or
equal to the input real number. Furthermore, we define a random variable for the effective
channel gain of the STA as Xn := γn. The probability density function of Xn is given by
fXn(xn) = (xn/β2

n) exp(−xn/βn) from the definition of γn; hence the expectation term in
(6) can be derived as follows:

Eγn

[
erfc

(
(2i + 1)

√
3 · ρn · γn

2(M2 − 1)

)]
=
∫ ∞

0
erfc

(
(2i + 1)

√
3 · ρn · xn

2(M2 − 1)

)
fXn(xn)dxn

=
∫ ∞

0
erfc

(
(2i + 1)

√
3 · ρn · xn

2(M2 − 1)

)
xn

β2
n

exp
(
− xn

βn

)
dxn

= 1−

√
3(2i+1)2·βn ·ρn

2(M2−1)√
3(2i+1)2·βn ·ρn

2(M2−1) + 1

1 +
1/2

3(2i+1)2·βn ·ρn
2(M2−1) + 1

.

(7)

By substituting (7) into (6), the analytical BER performance closed-form for the nth STA in
the proposed low-complexity uplink STLC-NOMA network is obtained. It is worth noting
that each STA achieves the same BER performance as using orthogonal resources.

Moreover, the expectation term can be approximated by using Taylor series expansion
under the high SNR regime as follows:

Eγn

[
erfc

(
(2i + 1)

√
3 · ρn · γn

2(M2 − 1)

)]
≈ 3

8
(

3(2i+1)2·βn ·ρn
2(M2−1)

)2 =
1
6

(
M2 − 1

(2i + 1)2 · βn

)2

ρ−2
n . (8)

By substituting (8) into (6), the asymptotic BER performance of the nth STA is obtained,
which represents the BER behavior in the high SNR regime.

Finally, from the asymptotic BER expression, we can derive the spatial diversity order
of each STA in the proposed STLC-NOMA system as follows:

ηn , − lim
ρn→∞

log Pb,n

log ρn
= 2. (9)

We can clearly state that the proposed uplink STLC-NOMA system achieves the optimal
spatial diversity order of two for both STAs.
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4. Blind Energy Estimation (BEE)

We can observe from (4) that the STLC decoded signal at the AP ỹl conforms to an
i.i.d. mixture of Gaussian distributions

ỹl ∼
1
|X |2 ∑

x(l)n ∈X

CN
(√

P1γ1x(l)1 + j
√

P2γ2x(l)2 , 2N0

)
,

because this is affected by AWGN as illustrated in the first column in Figure 1. Furthermore,
since the signals of both STAs are aligned on the in-phase and quadrature axes, respectively,
they can be divided into two components as follows:

<[ỹl ]∼
1
|X | ∑

x(l)1 ∈X

N
(√

P1γ1x(l)1 , N0

)
, for the first STA,

=[ỹl ]∼
1
|X | ∑

x(l)2 ∈X

N
(√

P2γ2x(l)2 , N0

)
, for the second STA,

(10)

as shown in the second and third columns in Figure 1. It is worth noting that each of
(10) still follows a mixture of Gaussians and can be modeled as a one-dimensional (1D)
Gaussian mixture model (GMM).

We now design an expectation-maximization (EM)-based blind energy estimation
(BEE) scheme for blindly estimating the transmit power and effective channel gain, Pnγn,
of each STA at the AP. Briefly, we exploit the EM algorithm [24], also known as soft K-
means clustering, which infers the parameters of the GMM given the number of STAs and
modulation type of each STA [25,26]. Recall that although the constellation consisting of
the superimposed M-ASK symbols from the two STAs configures M2 clusters as shown in
the first column in Figure 1, the signals of each STA are aligned on each axis. Hence, we
consider 1D GMMs with M parameters for the real and imaginary axes in (10).

Algorithm 1 represents the pseudo-code of the proposed BEE scheme for the two-user
uplink STLC-NOMA system employing M-ASK modulation, where N (z|µ, σ2) denotes a
Gaussian probability density function with mean µ and variance σ2 expressed as

N (z|µ, σ2) =
1√

2πσ2
exp

(
− (z− µ)2

2σ2

)
. (11)

The AP executes this algorithm by taking the STLC decoding signals ỹ in (4) as observed
data to infer the parameters of a GMM compromising M means, variances, and weights for
each axis. It can be stated that the objective of Algorithm 1 is to maximize the likelihood
function with respect to the GMM parameters for all observations,

Pr(z|µ1, µ2, · · · , µM, σ2) =
L

∏
l=1

M

∑
k=1

πkN (zl |µk, σ2), (12)

where z (= [z1, . . . , zL]
T ∈ RL×1) represents the observations, µk and πk denote the mean

and weight of the kth Gaussian distribution, respectively, and ∑M
k=1 πk = 1. Although the

canonical EM algorithm for a GMM infers the mean µk, variance σ2
k , and weight πk of

each Gaussian distribution [24], we exploit a shared common variance σ2 for all Gaussian
distributions in a GMM. This is because all symbols in a frame experience AWGN with the
same variance, so the clusters formed at the AP may have almost the same density. More
specifically, Algorithm 1 is as follows.
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(a) 2-ASK (M = 2), ρ1 = ρ2 = 20 dB, and L = 256.
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(b) 4-ASK (M = 4), ρ1 = ρ2 = 20 dB, and L = 512.
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(c) 8-ASK (M = 8), ρ1 = ρ2 = 25 dB, and L = 512.
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(d) 16-ASK (M = 16), ρ1 = ρ2 = 30 dB, and L = 1024.

Figure 1. The constellation diagrams of ỹ (first column), in-phase axis energy histograms <[ỹ]
(second column), and quadrature axis energy histograms =[ỹ] (third column), for M = 2, 4, 8, 16,
respectively, where P1 = P2 = 1, γ1 ≈ 1.1032, and γ2 ≈ 1.0303. For each case, the system SNR ρn and
frame length L were set appropriately to clearly present the characteristics.
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Algorithm 1 Blind energy estimation (BEE) algorithm.

1: Input: ỹ.
2: Output: P̂1γ1, P̂2γ2.
3: for all n (∈ {1, 2}) do

4: z =

{
<[ỹ], if n = 1,
=[ỹ], if n = 2.

5: Initialize the means µ1, . . . , µM and variance σ2 by dividing z into M clusters,
πk = 1/M, ∀k ∈ {1, . . . , M}, and Fold = 0

6: Calculate log-likelihood Fnew =
L
∑

l=1
ln
[

M
∑

k=1
πkN (zl |µk, σ2)

]
7: while |Fnew − Fold| ≥ ε do

. Expectation (E-Step)

8: Update responsibilities r(l)k = πkN (zl
∣∣µk, σ2)

/
M
∑

k′=1
πk′N

(
zl
∣∣µk′ , σ2) , ∀k, l

. Maximization (M-Step)

9: Update means µk =
L
∑

l=1
r(l)k zl

/
L
∑

l=1
r(l)k , ∀k

10: Update variance σ2 =
M
∑

k=1

(
L
∑

l=1
r(l)k (zl − µk)

2
/

L
∑

l=1
r(l)k

)/
M

11: Update weights πk =
L
∑

l=1
r(l)k

/
M
∑

k=1

L
∑

l=1
r(l)k

(
=

L
∑

l=1
r(l)k

/
L
)

, ∀k

12: Update log-likelihood Fold ← Fnew

13: Calculate log-likelihood Fnew =
L
∑

l=1
ln
[

M
∑

k=1
πkN (zl |µk, σ2)

]
14: end while

15: Estimate
√

P̂nγn =

√
M

M
∑

m=1
(2m−1−M)2

M
∑

m=1
|2m−1−M|

M
∑

k=1
πk|µk|

16: end for

4.1. Initialization (Lines 5 to 6)

The AP divides observations z into M sets in descending order, each with the same
number of elements, and calculates the means and variance by taking each set as a cluster.
As aforementioned, we consider the common variance for each cluster, which is obtained by
taking an average over the variances for all clusters. The weights are initialed by πk = 1/M
for all clusters since all constellation points of the STA tend to be uniformly drawn due to
purely random bit generations. Then, the log-likelihood function is calculated from the
initial GMM parameters and observations.

4.2. EM-Step (Lines 7 to 14)

The EM is an iterative two-step algorithm in which the expectation phase (E-step)
evaluates the responsibilities using the current parameters, and the maximization phase
(M-step) updates the parameters using the current responsibilities. Specifically, in E-Step,
the responsibilities r(l)k are evaluated for all k (∈ {1, 2, . . . , M}) and l (∈ {1, 2, . . . , L})
(line 8). As the name implies, each value of this indicates the responsibility of cluster k
for observation l. Then, in M-Step, each cluster’s mean µk, variance σ2, and weight πk
are adjusted to match the observations it is responsible for (lines 9 to 13). Note that we
consider a common variance for all clusters and draw it by averaging M variances. Then,
the AP evaluates the log-likelihood and compares it to the previous log-likelihood to check
convergence. If it does not converge, repeat from E-step.
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4.3. Energy Estimation (Line 15)

Finally, the received energy Pnγn for each STA is estimated from the inferred means
and weights, where the equation is derived from the following procedure. Without loss
of generality, assuming µ1 < µ2 < · · · < µM, the inferred means can correspond to the
normalized M-ASK constellation points as follows:

µk =
2k− 1−M√

∑M
m=1 (2m− 1−M)2/M

√
Pnγn, (13)

The AP is interested in estimating the received energy of the STA
√

Pnγn (≥ 0) from the
inferred constellation points, which can be obtained through the following equation:

1
M

M

∑
k=1
|µk| =

1
M

M

∑
k=1

|2k− 1−M|√
∑M

m=1 (2m− 1−M)2/M

√
Pnγn. (14)

Here, 1/M on the left-hand side represents the weight assuming all clusters have the same
weights, i.e., µk = 1/M, ∀k. However, in practice, each point on the constellation may not
be expressed with exactly the same probability depending on the generated bit sequence.
Hence, the AP can estimate the received energy of the STA from the inferred means and
weights as

M

∑
k=1

πk|µk| =
∑M

k=1 |2k− 1−M|√
M ∑M

m=1(2m− 1−M)2

√
Pnγn. (15)

Finally, √
Pnγn =

√
M ∑M

m=1(2m− 1−M)2

∑M
m=1 |2m− 1−M|

M

∑
k=1

πk|µk|. (16)

5. Simulation Results

The BER performance of the proposed novel low-complexity two-user uplink STLC-
NOMA system and its mathematical expressions in Section 3 were verified through ex-
tensive computer simulations, as shown in Figure 2. Here, we assumed that each STA’s
transmit power and partial CSI, denoted by Pnγn (received energy), are perfectly esti-
mated at the AP, and set the transmit powers and large-scale fading components of the
two STAs to P1 = P2 = P and β1 = β2 = 1, respectively. Figure 2a compares the BER
performance of the proposed novel uplink STLC-NOMA (Proposed) with the conventional
uplink STLC-NOMA (Conv.) [23], considering the same modulation order M. Specifically,
for a fair comparison, we compared the proposed STLC-NOMA systems employing 2,
4, 8, and 16-ASK with the conventional STLC-NOMA systems using binary-PSK (BPSK),
quadrature-PSK (QPSK), 8-PSK, and 16-QAM, respectively. Because BPSK with an optimal
constellation rotation angle of 90◦ in the conventional STLC-NOMA [21] and 2-ASK in the
proposed STLC-NOMA have the same constellation diagram, both have the same BER
performance. Somewhat interestingly, the proposed two-user uplink STLC-NOMA system
has improved BER performance in the low SNR regime, and this trend becomes more
remarkable as the modulation order increases. For modulation orders of M = 4 and 8,
the BER performance intersects at SNRs of approximately 18 and 31.5 dB, respectively,
and for M = 16, the proposed STLC-NOMA outperforms the conventional STLC-NOMA
in the entire SNR regime. For M = 4, the conventional STLC-NOMA is about 3 dB better
than the proposed STLC-NOMA in terms of the SNR to satisfy the same BER in the high
SNR regime. As discussed in Section 2, however, it is also worth noting that the proposed
STLC-NOMA has significantly lower computational complexity at the AP than the conven-
tional STLC-NOMA because it does not employ a joint detector. Figure 2b validates the
mathematical BER performance analysis results (6)–(8) in Section 3. It can be observed that
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the analytical BER expression is precisely the same as the Monte-Carlo simulation results
for arbitrary modulation order. Moreover, the asymptotic BER expression, exploited to
reveal that the proposed uplink STLC-NOMA system achieves optimal spatial diversity
order for both STAs, is also well-matched with the simulation results.
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Proposed, 8-ASK
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(b)

Figure 2. Average BER performance of two STAs in the proposed low-complexity uplink STLC-
NOMA and conventional STLC-NOMA systems. (a) Numerical BER performance of the proposed
STLC-NOMA (Proposed) and conventional STLC-NOMA (Conv.) [23]. (b) Analytic and asymptotic
BER performance of the proposed STLC-NOMA.

Figure 3 shows the BER performance of the proposed uplink STLC-NOMA system
with the BEE scheme designed in Section 4. Here, 2-ASK is omitted because even the
channel gain is not required in this case like the PSK constellation diagram. Specifically,
as shown in the first column in Figure 1a, the AP can detect the signals transmitted from
STAs by distinguishing only the quadrant. The transmit powers and large-scale fading
components of both STAs are still set to P1 = P2 = P and β1 = β2 = 1, respectively.
For the BEE algorithm, the maximum number of iterations of the EM loop was set to 100,
and ε = 10−8. Moreover, we set the frame length of each STA to L = 16 ·M in Figure 3a
and L = 32 · M in Figure 3b, according to the modulation order M. We can observe
from Figure 3 that since the accuracy of the clustering method depends on the number of
available data points (the number of symbols in a frame), as shown in Figure 4, the longer
the frame length, the better the BER performance. For example, with an SNR of 30 dB and
modulation orders of 8 and 16, the BER performance is improved by almost 50% when
L = 32 ·M compared to when L = 16 ·M. On the other hand, the proposed BEE algorithm
has a trade-off between accuracy and frame length. Specifically, the BEE algorithm has
O(L · M) computational complexity depending on the frame length L and modulation
order M; hence the complexity linearly increases as the frame length increases. Figure 4
depicts the average mean squared error (MSE) of the estimated energies for both STAs,
defined as MSE := ∑2

n=1(
√

γn −
√

γ̂n)2/2, when the transmit SNRs of the two STAs are
30 dB, i.e., ρ1 = ρ2 = 30 dB. We can observe that the MSE of the BEE algorithm has linearly
improved with respect to the frame length in the log-log domain. As earlier mentioned,
the more symbols within a frame, the more observations available at the AP, resulting in
the MSE improvement. Figures 3 and 4 also show that the designed BEE scheme works
well enough for short-length frames.
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Figure 3. Average BER performance of two STAs in the proposed low-complexity uplink STLC-
NOMA system employing the BEE algorithm at the AP with respect to the frame length.
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Figure 4. Average MSE of the proposed BEE algorithm with respect to the frame length, when the
transmit SNRs of both STAs are ρ1 = ρ2 = 30 dB.

Meanwhile, CSI estimation errors may exist in practical wireless networks, even in
channel estimation through pilot signals at the STA. Such a CSI estimation error can be
statistically modeled as h̃n,m , hn,m + εn,m, where h̃n,m and hn,m represent the actual CSI
and the estimated CSI, respectively, and εn,m indicates the estimation error [23]. In general,
the resultant estimation error is assumed to follow an i.i.d. CN (0, σ2

ε ), ∀n, m, where
variance σ2

ε represents the MSE of the estimation such that E[|hn,m − h̃n,m|] = σ2
ε . Figure 5

shows the average BER performance of the two STAs in the uplink STLC-NOMA systems
with respect to the MSE of the channel estimation, where ρ1 = ρ2 = ρ, β1 = β2 = 1,
and L = 32 · M. In particular, Figure 5a shows the results for varying SNRs when the
modulation order is 4, and Figure 5b presents the results for varying modulation orders
when the SNR is 20 dB. The proposed STLC-NOMA employs a blind receiver, whereas
the conventional STLC-NOMA assumes that the AP has perfect partial CSI because there
is no proposed blind receiver. As expected, we can observe that the BER performance of
the STLC-NOMA systems gradually deteriorates as the MSE of estimation increases. It
is worth noting that the BER performance is crossed when ρ = 20 dB and σ2

ε ≈ 10−2 in
Figure 5a, even though the perfect partial CSI is assumed at the AP for the conventional
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STLC-NOMA. Hence, we can state that the proposed low-complexity STLC-NOMA system
is more tolerant of channel estimation errors than the conventional STLC-NOMA system.
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Figure 5. Average BER performance of two STAs in the proposed low-complexity uplink STLC-
NOMA and conventional STLC-NOMA systems with channel estimation error. (a) The proposed
STLC-NOMA with 4-ASK and conventional STLC-NOMA with QPSK for varying SNRs. (b) The
proposed STLC-NOMA with M-ASK and conventional STLC-NOMA with M-PSK/QAM for an SNR
of 20 dB.

6. Conclusions

We have proposed a novel low-complexity STLC-NOMA system for two-user uplink
IoT networks. In summary, both STAs employ the M-ASK modulator and align their
modulated symbols to each axis in the I-Q plane, respectively, before STLC encoding.
Thanks to the characteristics of the STLC that remove the phase distortion caused by
wireless channels, the signals of each STA are still aligned on their axis at the AP. Hence,
the AP can detect the transmitted signals through the ML detector without joint detection.
Simulation results have shown that the proposed novel uplink STLC-NOMA system is
more efficient than the conventional uplink STLC-NOMA in terms of the computational
complexity of the detector and BER performance under the low SNR regime. Furthermore,
we have mathematically analyzed the exact BER performance of each STA in the proposed
uplink STLC-NOMA system, and verified that the optimal spatial diversity order could be
achieved. We also validated that these mathematical BER expressions are exactly the same
as the Monte-Carlo simulation results. Finally, we have designed an EM-based blind energy
estimation (BEE) scheme to blindly estimate the transmit power and effective channel gain
of each STA at the AP and observed that it works well even for short packet transmission.
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Abbreviations
The following abbreviations are used in this manuscript:

AP Access point
ASK Amplitude-shift keying
AWGN Additive white Gaussian noise
BEE Blind energy estimation
BER Bit-error-rate
CSI Channel state information
CSIT Channel state information is available only at transmitter
EM Expectation-maximization
GMM Gaussian mixture model
I-Q In-phase and quadrature
i.i.d. independent and identically distributed
MIMO Multiple-input multiple-output
ML Maximum-likelihood
NOMA Non-orthogonal multiple access
PAM Pulse amplitude modulation
PSK Phase-shift keying
SNR Signal-to-noise ratio
STA Station (IoT device)
STLC Space-time line code
STLC-NOMA Space-time line coded non-orthogonal multiple access
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